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Childhood malnutrition has long been associated with a wide range of adverse outcomes, including
an increased risk of morbidity and death from infectious diseases, impaired immunity, and

delayed motor and cognitive development. Recent analyses indicate that poor anthropometric status
may be the underlying cause of more than half of the childhood deaths in developing countries. When
these associations were first noted more than 30 years ago, malnutrition was thought to be due to
inadequate dietary protein, or later to insufficient dietary energy intake. Since then, it has been recog-
nized that malnutrition is more complex and usually includes deficiencies of one or more micronutri-
ents. Furthermore, the full consequences of specific micronutrient deficiencies have recently achieved
greater recognition. Iodine deficiency in pregnancy causes creatinism and in childhood may be associ-
ated with reduced mental performance. Iron deficiency is a well-known cause of anemia, but studies in
the last 15 years have also shown an association with mental development and cognitive performance.
Vitamin A deficiency has been known to cause xerophthalmia and blindness for many years; however,
trials of vitamin A supplementation have unexpectedly demonstrated substantial reductions in child
mortality and increased immune responses to childhood vaccines. The recognition of the importance
of these three micronutrients has led to interventions to improve their intake in populations likely to
be deficient.

Zinc deficiency may be another example of a micronutrient deficiency that is highly prevalent and
that has broad, adverse consequences. It is likely that zinc deficiency is widespread in developing
countries with particular effects in pregnancy and early childhood. Evidence is accumulating that this
deficiency leads to complications of pregnancy and childbirth, lower birth weight and poor growth in
childhood, reduced immunocompetence, and increased infectious disease morbidity. Since childhood
infectious disease morbidity from diarrhea, pneumonia, and malaria is the cause of most of the child-
hood deaths in developing countries, it is also plausible that zinc deficiency contributes to the elevated
mortality rates still seen in many developing countries. 

The Zinc for Child Health meeting was convened to examine the effects of zinc deficiency on child
health and development, and to plan additional research to further define the extent of the problem
and ways to improve zinc nutriture of populations. Research on iodine, iron, and vitamin A, especially
field studies in developing countries, led to well-justified, special attention for these micronutrients in
health and nutrition programs. Recent research suggests that zinc also deserves special emphasis. As
with the other important micronutrients, a number of program interventions must be available to
address the problem in specific settings. Thus, more targeted approaches, such as supplementation
and fortification, may have a role, even as efforts are made to improve dietary diversity and quality. 

Robert E. Black, M.D., M.P.H.
Meeting Organizer
Johns Hopkins School of Public Health
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A conference on Zinc for Child Health was held at the Johns Hopkins School of Public Health in
November of 1996 to: 

examine research findings and identify research gaps 
explore programmatic options for improving zinc nutrition in developing countries 

The importance of zinc as an essential trace metal was first shown in 1934 by Todd et al (1). Follis,
Day and McCollum(2) extended these findings and described much of the pathology of severe zinc

deficiency, including growth stunting, alopecia, dermatitis, hyperkeratosis and parakeratosis of the
esophageal epithelium, and atrophy of germinal and immune tissues. Ten years later Prasad and
Halsted(3) suggested zinc deficiency was an underlying cause of stunting and hypogonadism in Iranian
farm boys. They subsequently confirmed their hypothesis in Egyptian and Iranian adolescents through
studies of zinc metabolism and therapeutic trials(4-9). Zinc deficiency is now known to occur among
children and adults of many countries(10-14), and is thought to be an important public health 
problem(15,16). 

It is well known that zinc is present in many foods, but in most developing countries children
have a low intake of foods rich in readily absorbable zinc, such as liver, red meat, poultry, fish, oys-
ters, and crabs(17). Traditional staple foods, such as cereals, legumes, and tubers, contain zinc, but the
presence of phytate, fiber, and lignin reduces its bioavailability. These substances form insoluble
complexes with zinc, preventing its absorption(17). Cow’s milk, because of its high concentrations of
calcium and casein, and soymilk, because of its phytate content, may further reduce the absorption of
zinc from the diet. In contrast, zinc in breast milk is well absorbed. Vegetables and fruits contribute
very little to dietary zinc intake, but fruits eaten with cereals may increase the bioavailability of zinc(18).

Zinc metabolism: Implications for assessment of zinc status 

Michael Hambidge opened the meeting by explaining that zinc stable isotopes (particularly 67Zinc,
68Zn and 70Zn) can be applied to the identification of populations at risk from zinc deficiency, to

provide information on how effectively the intestine is absorbing exogenous dietary zinc and conserv-
ing endogenous zinc. They can also yield estimates of the quantity of readily exchangeable zinc in the
body, and can provide extensive information on zinc status and the bioavailability of dietary zinc—
allowing researchers to relate zinc intake to physiological and pathological conditions. According to Dr.
Hambidge, short-term zinc exchange with plasma in a 48-hour period was the most important for zinc
dependent metabolic processes, and the most sensitive to dietary zinc restriction—but is extremely 
difficult to measure outside of the laboratory. He reported that he has had some success measuring zinc
plasma enrichment 2-10 days after isotope administration, and extrapolating to estimate short-term 
exchange. The benefit of this approach is that only a spot urine sample with a rough time estimate is
necessary for testing. This method has shown that when dietary zinc is decreased in normal individuals,
the exchangeable pool size decreases, and when diet returns to normal, the pool size also returns to
normal. In conclusion, he emphasized that the measurement of plasma zinc should be considered along
with excretion of endogenous zinc in the feces and urine zinc to give a complete picture of total body
zinc status; that stable zinc isotopes provide specific and quantitative information such as fractional
total body zinc that is available for metabolic use. 

Dr. Hambidge also emphasized that application of these techniques in longitudinal studies pro-
vide quantitative data on the effectiveness of prevention programs ranging from simple community
measures to reduced dietary phytate to zinc fortification and supplementation programs. Further,
judicious application of zinc stable isotope techniques could make a major contribution to progress
towards the eradication of zinc deficiency in infants and young children in the developing world. 

Meeting
Objectives

Background

Documenting
Zinc Deficiency
in a Population 



Assessment of zinc status in children

Due to the dynamic nature of zinc metabolism—plasma zinc turns over 150 times a day in normal
individuals, and when zinc is low in the diet, the body reduces the excretion of zinc in order to 
preserve zinc stores—Janet King stressed the difficulty in identifying zinc deficiency in children. The
three basic steps needed to assess zinc status are 1) determining the amount and sources of zinc in
the diet; 2) measuring the diet zinc/phytate molar ratio, with a ratio of greater than 15 as an indica-
tor or poor bioavailability, and 3) measuring plasma zinc, with 10.8 µmol/dl as the minimum normal
concentration and <9.2 µmol/dl as an indicator for possible deficiency. Although not a validated
method, Dr. King mentioned growing support for measuring 65Zn uptake in erythrocytes as an addi-
tion to the measurement of plasma zinc.

Zinc status can also be indicated by measuring whether children’s growth is affected by zinc sup-
plementation. Factors to keep in mind when measuring zinc status in children are: males are more
susceptible to zinc deficiency than females—but respond more readily to supplementation; more zinc
supplementation is needed for children on a cereal-based diet, and a large bolus dose may not be as
effective as a small daily dose. Finally, measuring zinc status in pregnant women may be an impor-
tant predictor of low birth weight in their infants. Reduced weight and length at birth may, in turn,
predispose the child for continued nutritional deficiency. 

Influence of infections on plasma zinc

Studies of the metabolic consequences of experimentally induced infections in human volunteers
indicate that these illnesses cause a significant decline in plasma zinc concentrations, according to
Kenneth Brown. Likewise, descriptive studies of hospitalized adults with severe infections suggest
that plasma zinc concentrations are decreased during the acute phase of illness. These observations
imply that the plasma zinc concentration may be less useful as an indicator of zinc status in individu-
als and populations in low-income countries, where high prevalence rates of infections are common.
By contrast with these experimental and clinical findings, three recent community-based assessments
of children’s plasma zinc concentrations found no association between the presence of infection and
plasma zinc levels, possibly because of the reduced severity of infections typically encountered in
community settings. Furthermore, the magnitude of other sources of variation in plasma zinc con-
centration, such as age, recent meals, and time of day, may be greater than the effects of common
childhood infections. Available data suggest that the mean plasma zinc concentration may be a useful
indicator of population zinc status in developing countries, despite the elevated rates of infection that
are frequently observed. 

Plasma zinc as a predictor of morbidity in children 

Reporting on a study conducted in New Delhi, India, M. K. Bhan found that low plasma zinc con-
centrations were associated with an increase in diarrheal and respiratory disease morbidity. A cohort
of 116 children aged 12-59 months were enrolled in the study while recovering from episodes of
acute diarrhea (defined as episodes lasting less than seven days) in an urban slum’s community health
clinic and followed for three months after recovery from diarrhea. Dr. Bhan found that a child with
low initial plasma zinc (non-fasting concentrations < 56 µg/dl) spent significantly greater number of
days with watery diarrhea, diarrhea associated with fever and acute lower respiratory infections. The
incidence of diarrhea was 47% higher and that of severe diarrhea (defined as greater than five liquid
stools per day) was 70% higher in zinc-deficient children. 
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Assessment of dietary zinc in a population 

Rosalind Gibson described an interactive 24-hour recall method developed by her group for assessing
zinc and phytate intakes in populations using picture charts, samples of actual foods, food models, and
plates to aid respondents in portion size estimation and recall. Food intake data were then used in con-
junction with food composition data to calculate nutrient and anti-nutrient intakes in the population.
The food composition data were compiled from chemical analysis of composite samples representative
of each of the staple foods consumed. High performance liquid chromatography (HPLC) was used to
identify and quantify the higher and lower inositol phosphates, and flame atomic absorption spec-
trophotometry was used for the analysis of zinc in the food samples. Table 1 compares zinc and phytic
acid intakes and phytate: zinc molar ratios of children from selected developing countries.

Dr. Gibson concluded that probability estimates for risk of zinc deficiency can be calculated from
dietary zinc intake alone; however, this would not identify actual individuals in the population who
are deficient, or define the severity of the zinc inadequacy. Such information can only be obtained
when the dietary intake data are combined with biochemical and functional physiological indices of
zinc status. She stressed that this is especially important in developing countries where the coexis-
tence of many other multifaceted health problems often confound the diagnosis of zinc deficiency. 

Overview of micronutrient biological interactions 

Carl Keen began this session by stressing that the most important interactions are between zinc and
other minerals. For example, several studies now suggest that zinc deficiency can increase the toxi-

city of lead and to a lesser degree cadmium, and that magnesium competes with zinc for binding sites
and when given together can inhibit each other. Dr. Keen also noted that in a state of chronic zinc
deficiency, iron stores increase in the tissues and can cause damage via release of oxygen radicals. He
therefore suggested the administration of antioxidants along with zinc and other micronutrients in
severely malnourished populations. In pregnant rats, copper deficiency can be made more severe by
zinc supplementation, and could cause fetal malformation. Dr. Keen closed with comments noting that
there exist no data on whether humans have racial and ethnic differences in their need for and ability to
metabolize zinc.

Country Age (years) Zinc Phytic acid [Phytate]:

(mg/day) (mg/day) [Zinc] ratio

Papua New Guinea 6-10 4.4±1.3* 646±663* 12

Ghana 3-6 4.7±1.1 591±153 13

Malawi 4-6 6.6±1.7 1899±590 25

Canada  4-6 6.9±2.3 300** 5

Egypt 1.5-2.5 5.2±1.6 796±249 16

Kenya 1.5-2.5 3.7±0.9 1066±324 28

Mexico 1.5-2.5 5.3±1.3 1666±650 30

Nigeria 1-10 3.6±0.9 - -

Guatemala 6-8 9.0±2.7 962 11

The Gambia 1.2-1.5 4** - -

(* Mean ± SD; **Median)

Interactions of
Zinc and Other
Micronutrients 

Table 1. 

Dietary zinc and 

phytate intakes 

of children 



Zinc and vitamin A

Evidence of interaction between zinc and vitamin A, and possible health implications of such 
interaction during deficiency, was explored by Keith West. Zinc is required for synthesis of retinol
dehydrogenase, an enzyme that converts retinol to retinaldehyde in the intestine and other tissues,
including the retina of eye where this zinc-dependent enzyme participates in the visual cycle. Dr.
West noted that zinc may regulate vitamin A absorption and is required for synthesis of retinol-
binding protein in the liver. Animal data suggest there may be a threshold for zinc status below
which the release and transport of vitamin A from the liver is compromised. Thus, adequate zinc
nutriture appears to be necessary for the absorption, transport, storage, and some functions of vita-
min A. Conversely, severe vitamin A deficiency may adversely affect zinc absorption through
decreased synthesis of an intestinal zinc-binding protein. Dr. West noted that in humans circulating
levels of zinc and vitamin A appear to be correlated in malnourished individuals and that, in some
hepatic disease states, zinc deficiency could increase risk of night blindness. However, findings from
randomized supplementation trials to date have been inconsistent in demonstrating a clear depen-
dence between zinc and vitamin A in affecting nutrient status and health. 

Zinc and iron

The interactions between zinc and iron were presented by Paul Whittaker, who noted interactions to
be most severe when iron and zinc are given together with zinc in the form of a simple salt. The total
amount of iron seems to affect the absorption of zinc and a total dose of iron greater than 25 mg may
produce a measurable reduction in zinc absorption. This could occur if iron supplements are taken
with a meal, and it has been recommended that iron supplements should be taken between meals.
Recent studies using stable isotopes have shown that fortifying foods with iron has no adverse effect
on zinc absorption when iron is added at current fortification levels. In reviewing the supplementation
of the U.S. diet with zinc and iron, Dr. Whittaker said that there are five zinc salts listed as GRAS
(generally recognized as safe) by the FDA for use in food fortification, and from 1970 to 1987, the
total poundage of zinc salts used in food continually increased. Twelve iron sources are also listed for
fortification of foods with elemental iron being the iron source of choice because it is less expensive to
produce and has fewer organoleptic problems. Foods commonly fortified with iron and zinc in the
U.S. include flour, bakery goods, cereals, rice, macaroni, and infant formula. 

Summary of studies from Bangladesh [2], India [2], and Indonesia on acute diarrhea 

The combined results of studies, most of which have not yet been published, by several investiga-
tors examining the therapeutic effects of zinc on acute diarrheal duration and severity were pre-

sented by Sunil Sazawal(20-23). The children in each study were enrolled during treatment for diarrhea
in a health facility. Zinc-supplemented children were given zinc with or without other micronutrients.
Children not receiving zinc were administered micronutrient mixtures or a placebo. Overall diarrheal
duration was decreased by 9% to 23%. In children with a lower initial zinc status, the duration
decrease ranged from 22% to 33%. Diarrheal severity as measured by stool frequency or stool output
was also reduced in all children by 18% to 39%. In children with lower initial zinc status, diarrheal
severity was reduced from 23% to 33%, and in poorer nourished children by 38% to 52%. A meta-
analysis of these studies is planned. 

Summary of studies from Bangladesh, India, Pakistan, and Peru on persistent diarrhea 

Persistent diarrhea is associated with higher morbidity and mortality than severe diarrhea, and also
tends to be more prevalent in malnourished populations. The combined results of studies by several
investigators examining the therapeutic effects of zinc on persistent diarrheal duration and severity
were presented by Mary Penny (22). As in the acute diarrhea studies, these children were enrolled
during treatment for persistent diarrhea in a clinic or community setting. Zinc-supplemented chil-
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dren were given zinc with or without other micronutrients. Children not receiving zinc were admin-
istered micronutrient mixtures or a placebo. Overall persistent diarrheal duration was decreased 
9% to 22%. Although the results were not statistically significant, children with a lower initial zinc
status and poorer nourished children had a duration decrease of up to 32%. Diarrheal severity was
reduced 21% to 26% in children with lower initial zinc status. Dr. Penny suggested that the results
of zinc supplementation on persistent diarrhea may be more spectacular than for acute diarrhea
because the children with persistent diarrhea could have more severe malnutrition, other micronutri-
ent deficiencies, or underlying disease states. A meta-analysis of these studies is also planned.

Summary of studies from Bangladesh [3], Brazil, Guatemala, India, Mexico, 
Papua New Guinea, Peru, and Viet Nam with diarrhea and pneumonia outcomes 

Day two of the symposium opened with a summary of international studies, most of which were
recently completed and not yet published, indicating that zinc can prevent diarrhea, acute lower

respiratory infections; and pneumonia by Robert Black (23-26). In India, Bangladesh, and Peru, children
were enrolled in the studies after episodes of acute or persistent diarrhea. In the other studies, children
were selected from the general community, or were selected because of low birth weight or low weight
for age. Children were given zinc with or without other micronutrients; children not receiving zinc
were administered micronutrient mixtures or a placebo. Children were supplemented for 2 to 12 weeks
and followed for 2 to 12 months. In seven studies providing continuous zinc supplementation, the
reduction of diarrhea ranged from 8% to 45%. In three studies providing short-course supplementation
(two weeks to two months) with follow-up of two to seven months, two studies found reductions of diar-
rheal incidence of 38% and 48%, while one study found no difference. In children at least 12 months
old, diarrheal incidence decreased 27% to 47%, but there appeared to be less effect in children less than
12 months old. The incidence of acute lower respiratory illness (defined by elevated respiratory rate) or

Preventive
Effects of Zinc
for Diarrhea,
Pneumonia, and
Malaria 
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pneumonia (as defined by elevated respiratory rate coupled with chest indrawing or  fever) decreased
by 3% to 60%. The reduction was greater in some studies in children with lower initial concentrations
of plasma zinc or with poorer nutritional status. A meta-analysis of these studies is also planned. 

Dr. Black compared the preventive effects of zinc supplementation with other interventions based
on previous reviews of evidence by WHO and the London School of Hygiene and Tropical
Medicine (Table 2). The median effects of zinc supplementation on diarrhea and pneumonia are 
-26% (range -8% to -48%) and -12% (range -3% to -60%), respectively. These effects compare
favorably with other interventions.

Effects of zinc on malaria in Papua New Guinea 

Anuraj Shankar presented evidence showing that malarial morbidity is reduced by zinc supplementa-
tion. Children, aged 6 to 60 months, were matched for malarial parasite density, age, sex, nutritional
status, and mosquito net use, and were enrolled in a placebo-controlled community-based study in
Wosera, Papua New Guinea. Supplemented children were given 10 mg of zinc, six days a week.
After monitoring for 10 months, researchers noted a 29% decrease in overall health center atten-
dance and a 38% decrease in reported fevers. Importantly, blood samples showed that, for children
given zinc, there was a 40% reduction in fever associated with P. falciparum parasitemia and a 32%
reduction in malaria-attributable fever at parasite densities greater than 5000/µl. There was a 36%
decrease in fever with parasite densities greater than 50,000/µl (a density representing severe disease).
Zinc supplementation had no effect on densities of P. vivax—suggesting that zinc may only be useful
in reducing specific types of malarial morbidity.

Zinc and immune function

The immune system is particularly sensitive to perturbations in zinc status, and zinc deficiency
depresses immune competence at fundamental levels, according to Anuraj Shankar. DNA from

zinc-deficient animals is more susceptible to digestion by micrococcal nuclease, indicating decreased
association of proteins involved in DNA replication and cell division. Dr. Shankar reported that zinc
deficiency has deleterious effects on the development and/or function of most immunological cells
including T cells, B cells, and macrophages. Reductions in spleen and thymus size were evident in 
zinc-deficient mice, and production of immunglobulins (IgA, IgM, and IgG) were all decreased. Field
studies examining thymic size and DTH in children also indicate decreases in the zinc-deficient state.
Macrophage activation and phagocytosis is also compromised in the zinc-deficient animals and humans.

When laboratory animals were deprived of zinc during pregnancy, spleen and thymic size and
immune function were reduced in their pups relative to zinc-sufficient controls. Pups born of the
zinc-deprived mice continued to show signs of decreased immune function up to 12 weeks after
birth—indicating the potential long-term importance of sufficient zinc intake during pregnancy. 

Intervention Diarrhea Pneumonia

Water and Sanitation -27% None

Breastfeeding -10% -10% to -20%

Rotavirus Vaccine -4% for all diarrhea None

-20% for severe diarrhea

Vitamin A small for all diarrhea None

-20%for severe diarrhea

Zinc -26% -12%

Table 2. 
Preventive Effects 
of Interventions 
on Incidence of
Diarrhea and
Pneumonia 

Zinc, Immunity,
and Response to
Vaccines
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Effect of zinc deficiency on immune function 

Ananda Prasad, one of the first researchers to study zinc-related stunting in humans in 1961, pre-
sented additional evidence suggesting that zinc deficiency interferes with the cell-mediated immune
response. In a group of volunteers, Dr. Prasad simulated a mildly zinc-deficient state by administer-
ing only 4 to 5 mg (current U.S. RDA = 10 to 15mg/day for adults) of zinc per day in a soy-protein
diet. At the end of 8 to 12 weeks, decreased lymphocyte zinc concentration and decreased thymulin
activity were observed. When zinc was added to the plasma in vitro, thymulin activity was restored—
indicating that the activity of thymulin itself was zinc-dependent. 

The researchers also found that interleukin 2 (IL2) production to be greatly reduced in T- helper
cells from zinc-deficient donors. Interestingly, the production of IL4, IL5, IL6, and IL10 were unaf-
fected. This implies an imbalance between T-helper 1 cells (TH1) and TH2 cells in zinc deficiency—
and may represent an important pathway by which zinc affects cell-mediated immunity. Dr Prasad also
noted a decrease in the ratio of CD4/CD8 lymphocytes—indicating a decline in production of naive
cells in the thymus. It was also noted that CD8 and CD73 cytotoxic lymphocytes were decreased due
to zinc deficiency. In cell culture studies of HUT-78, a T-helper malignant cell line, the S-phase of
the cell cycle was inhibited, resulting in decreased mitotic division due to zinc deficiency. 

Improvement of immune competence in zinc trials 

Results from a trial in India done to evaluate cellular immune competence of children before and after
zinc supplementation were presented by Sanju Jalla. The study children, aged 6 to 35 months, were
enrolled during treatment for diarrhea in an urban health clinic. Zinc-supplemented children were
given zinc with other micronutrients. Children not receiving zinc were given the micronutrient mix-
tures. Randomly selected children were given a multiple antigen skin test (for response to tetanus,
diptheria, streptococcus, tuberculin, candida, trichophyton, and proteus) before and after 120 days of
zinc supplementation. The percentage of anergic and hypoergic children, measured by induration
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scoring of the skin tests, decreased from 67% to 47% in the zinc supplemented group, but remained
unchanged in controls. Analysis of peripheral blood lymphocytes indicated a significant rise in CD3,
CD4, and the CD4/CD8 ratio of circulating T-lymphocytes in the zinc group. Thus oral zinc supple-
mentation improved two parameters of immune function.

Zinc deficiency and transmission and progression of HIV infection 

Andrea Ruff reported on a trial showing lower plasma zinc concentrations in HIV-positive individu-
als compared with HIV-negatives. Data from the Multicenter AIDS Cohort Study (27) showed

HIV-positive men who progressed to AIDS had mean zinc concentrations of 85.2 µg/dl, while HIV-
positive non-progressors had mean zinc of 90.7 µg/dl, and HIV-negative controls had zinc concentra-
tions of 92 µg/dl. Other studies of zinc deficiency and HIV progression in the U.S. and Europe have
not shown statistically significant differences. 

Based on these results, Dr. Ruff and colleagues enrolled at the time of the birth of their infants,
HIV-positive women and sero-negative controls in a trial examining HIV and breastfeeding in Haiti.
During the 18-month follow-up, they found that HIV-positive and HIV-negative infants born to
HIV-positive mothers didn’t grow as well as children unexposed to the virus—based on weight for
age scores and height. Sero-negative and sero-positive infants born to infected mothers also had
lower CD4 lymphocyte counts than unexposed children. Serum zinc concentrations of these children
followed similar patterns. Infected children had the lowest mean concentrations (64 µg/dl), while
sero-negatives never exposed to HIV had 73 µg/dl of zinc—HIV-negative infants born to infected
mothers had zinc concentrations that fell in between these two means. The mothers of these children
also had similar zinc concentrations, with HIV-positive mothers having 71 µg/dl of zinc, and HIV-neg-
ative mothers having 78 µg/dl. Although not statistically significant (possibly due to small sample size),
Dr. Ruff found that HIV-positive women who transmitted the virus to their children had lower zinc
concentrations than non-transmitters.

Meta-analysis of zinc supplementation effects on growth 

Ameta-analysis of 25 studies of the effect of zinc supplementation on children’s growth was present-
ed by Kenneth Brown. Prospective intervention trials were included in the analysis if they enrolled

a concurrent control group and provided suitable data on change in height or weight during the period
of observation. The pooled study population amounted to more than 1,000 individuals, with represen-
tation of most regions of the world.

The meta-analysis demonstrated that in all children studied, zinc supplementation had a highly
statistically significant effect of small magnitude on linear growth and weight gain. Children who
were stunted at baseline had a moderately large effect of zinc supplementation on linear growth,
while non-stunted children had no effect. With weight gain, the magnitude of the effect of zinc sup-
plementation was inversely related to plasma zinc concentration at baseline. 

Effects of zinc supplementation on activity levels of children in India and Guatemala 

Evidence for increased child activity levels with zinc supplementation was given by Margaret
Bentley, who performed observations with momentary time sampling (instant activity every 
10 minutes) in children from India and Guatemala (28-29). In these two studies, a total of 170 children,
6 to 23 months of age, received supplements for at least one month before study. Zinc gluconate 
(10 mg of elemental zinc) was given daily to the zinc group.

In India, outcomes were measured as percentages of time spent in each of five activity levels and
two groups representing high and low movement and overall rating by two activity scores. Children

Zinc and HIV
Infection

Effects on
Growth, 
Activity, and
Development
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in the zinc-supplemented group spent 72% more time performing activities in the high-movement
group. Among the zinc-supplemented children, the activity rating by the children’s activity rating (CAR)
score was 12% higher and by the energy expenditure score was 8.3% higher than in the controls.

Due to the lower age of the infants in Guatemala (ages 6 to 9 months at enrollment), Dr. Bentley
used more age-appropriate activity markers to assess their developmental status. After three months,
the zinc-supplemented children spent significantly more time sitting than non-supplemented infants,
and at 7 months, the zinc group spent 12% more time in play than the placebo group. She stressed
that the relationship between the activity increase and locomotor development needs to be investi-
gated, as do the long-term implications of supplementation in terms of developmental status and
school performance. 

Potential effects of zinc on child development 

Poor nutrition can affect cognitive development through poor growth, increased illness, inhibited
central nervous system development, and reduced activity leading to inferior motivation and explo-
ration, according to Maureen Black. Recounting results from trials that examined zinc deficiency and
activity and developmental scores, Dr. Black noted that in Egypt, low scores on the Bayley Scales of
Infant Development in infants were related to high maternal fiber and phytate intake. In Canada, a
study by Friel and colleagues (30) used the Griffiths scale to measure activity, and found greater
growth and motor development in zinc- and copper- supplemented children than in age-matched
controls (Figure 1). Emphasizing that activity scores are difficult to study because of their close rela-
tionship to developmental age, Dr. Black introduced the design of her current study in India examin-
ing zinc supplementation and activity, attention, and development. Children are being supplemented
for 9 months, and evaluated at 6, 10 and 15 months after enrollment. 

Activity indicator Zinc group Control group
(n=48) (n=48)

CARRIED ACTIVITY 17.7 ± 10.7* 16.9 ± 12.1

Stationary 1 48.7 ± 12.0 49.6 ± 14.5

Stationary 2 6.1 ± 4.0 7.0 ± 4.3

Slow Movement 16.0 ± 7.3 15.1 ± 10.9

Moderate Movement 5.4 ± 5.3 3.7 ± 3.8 **

Fast Movement 2.7 ± 4.0 1.0 ± 1.6 †

MOVEMENT GROUP

Low 70.8 ± 9.0 71.7 ± 10.0

High 8.1 ± 6.4 4.7 ± 4.4 †

ACTIVITY RATINGS

CAR Score 144.2 ± 30.3 128.7 ± 33.5 †

Energy Expense 119.5 ± 16.1 110.3 ± 18.9 **

(* Mean ± SD; ** p <0.05; † p <0.01) from Sazawal et al (28)

Table 3. 
Comparison of 
Activity Indicators in
Zinc-Supplemented and
Non-Supplemented
Indian Children



Effects of zinc supplementation on neuromotor and cognitive functions in Chinese children

The session concluded with Harold Sandstead presenting evidence that zinc supplementation
improved neuro-psychological functioning and growth in Chinese children. Dr. Sandstead described
preliminary findings from a 10-week double-blind controlled trial of zinc repletion in 720 6 to 9-year-
old, urban low-income first-graders from Chongqing, Qingdao, and Shanghai, People’s Republic of
China. Treatments were 20 mg zinc alone, 20 mg zinc with micronutrients, and micronutrients alone.
Maximal improvement in neuro-psychological functions occurred after ingesting the zinc-containing
mixtures, but not after micronutrients alone. In contrast, maximal growth occurred after the combina-
tion of zinc with micronutrients; micronutrients alone had an intermediate effect and zinc alone the
least effect. He concluded that zinc deficiency appears to be a problem among poor Chinese children,
and zinc repletion will improve their cognition, neuromotor functions, and growth.

Micronutrient premix for treating malnutrition and persistent diarrhea 

Olivier Fontaine of the World Health Organization described the successful development of low-
cost, zinc-enriched micronutrient premixes for the treatment of severe malnutrition and persistent

diarrhea. Based on guidelines specified by WHO (Table 4) (32, 33), formulae were custom-designed by
Nutrisels in Malaunay, France, to be low-cost, easy to manufacture, and easy to use in the field. Factors
affecting cost included the choice of mineral salt and amount of the mineral—with lower amounts
resulting in higher costs (due to the need for more precise measurement and the greater importance of
complete mixing of ingredients). Presentation of the mixture is also important. Researchers decided
that powder was better than syrup, tablets, or enrichment of foodstuffs for reasons of both cost and
taste of mineral salts, which have to be disguised with flavoring and coloring agents. 

Zinc was added in the form of zinc gluconate. Iron was not administered because recent data from
WHO show that it is linked with higher mortality in the most severely malnourished children.
Therefore, it is contraindicated in the most severely ill children and should only be given after stabi-
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Figure 1. Motor Development Among Zinc-Supplemented and Non-Supplemented Infants
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lization of nutritional status. Iodine was omitted from
the mixtures, because it reacted negatively with copper.
Manganese was excluded from the mixture for severe
malnutrition for the same reasons. The resulting pow-
der for severe malnutrition was estimated to cost two
cents per day. 

Preliminary results of studies conducted in refugee
camps in Africa indicate that zinc-supplemented
micronutrient premixes are both useful and safe for the
treatment of severe malnutrition.
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Intake Intake for Test Mixture Test Mixture for
for Severe Persistent for Severe Persistent
Malnutrition Diarrhea Malnutrition Diarrhea

(per 100 kcal) (per day) (per 100 kcal) (per 2.3 g)

Vitamin A 150 µg 400 - 1600 µg 172 µg 1500 µg

Vitamin D 3 µg 10 - 40 µg 3 µg 10 µg

Vitamin E 2.2 mg 5 - 20 mg 2.2 mg 15 µg

Vitamin K 24 µg 15 - 60 µg 4 µg 25 µg

Vitamin C 10 mg 40 - 160 mg 10 mg 60 mg

Thiamin (B1) 70 µg .7 - 2.8 mg 70 µg 1.5 mg

Riboflavin (B2) 200 µg .8 - 3.2 mg 200 µg 1.7 mg

Niacin 1 mg 9 - 36 mg 1 mg 20 mg

Vitamin B6 70 µg 1 - 4 mg 70 µg 2 mg

Folic Acid 100 µg 50 - 200 µg 35 µg 400 µg

Vitamin B12 100 µg .7 - 2.8 µg 100 µg 6 µg

Biotin 10 µg 20 - 80 µg 10 µg 30 µg

Panthotenic Acid 300 µg 3 - 12 mg 300 µg 10 mg

Potassium 160 mg — 156 mg —

Calcium 80 mg 800 - 3200 mg 93.5 mg 757.5 mg

Phosphorus 60 mg 800 - 3200 mg 99 mg 125 mg

Magnesium 10 mg 80 - 320 mg 13.9 mg 106 mg

Iron — — — —

Zinc 2 mg 10 - 40 mg 2.25 mg 15.2 mg

Copper .3 mg 1 - 4 mg .29 mg 2 mg

Iodine 12 µg 70 - 280 µg — —

Selenium 4.7 µg 20 - 80 µg — —

Manganese 300 µg 1.25 - 6.00mg — 3.96 mg

Table 4. 
Intake of
Micronutrients



Possibilities for treatment of acute diarrhea 

George Fuchs said that there is evidence in favor of using zinc supplementation to treat cases of
acute diarrhea. An increasing amount of data demonstrating benefit continues to emerge from epi-
demiologic and clinical trials. A short course of zinc is feasible from a cost perspective and the rou-
tine use of zinc, at least as a short course, appears to be practical for all children with severe diarrhea.
Operational questions remain, however, including the dosing regimen (single or multiple daily dose,
or a dose several times per week) and whether or not zinc should be administered as a separate sup-
plement, as part of a micronutrient mix, or with meals. Awaiting this information should not prevent
the use of zinc for treatment of acute diarrhea. Additional answers are needed concerning zinc toxici-
ty, and its interactions with other micronutrients—especially copper. Any remaining doubts about
safety need to be quickly addressed.

Dr. Fuchs noted that if zinc is to be ultimately incorporated into diarrheal disease programs, it
will need to be included as part of an overall package of actions: ORS, general nutritional therapy,
advice on appropriate feeding and breastfeeding, and sanitation (handwashing and proper disposal of
excrement). He concluded that the evidence to include zinc in programs is nearly sufficient, and
could be compelling, provided the answers to a few questions become available. 

Dietary interventions

Adietary modification program designed to increase the zinc, vitamin A, and iron content, and
bioavailability of diets in rural southern Malawi, was described by Rosalind Gibson. The Tulimbe

nutrition project consisted of three aspects: 1) increase intake of foods with a high content and bioavail-
ability of zinc; 2) increase intakes of foods known to enhance zinc absorption, and 3) use soaking, 
germination, and/or fermentation to induce phytase hydrolysis of phytic acid. 

In this project, Dr. Gibson encouraged dietary diversification through the consumption of zinc-
rich fish caught in Lake Malawi and sold fresh or dried in local markets in the area around the pro-
ject, as well as the consumption of boiled, ground nuts as snacks. The addition of ground nut flour
to maize-based porridges and nsima is also recommended to enhance the zinc as well as energy, fat,
and iron densities of the rural diets. She also emphasized the enhancing effect of certain amino acids
and organic acids (e.g., citric, lactic, butyric, formic acid) on zinc absorption. When released during
the digestion of cellular animal proteins and when formed during fermentation, these substances
enhance zinc absorption, possibly by forming soluble ligands with zinc and/or by forming complexes
with zinc, thereby preventing the formation of the insoluble zinc-phytate complex. Dr. Gibson con-
cluded by saying that dietary modifications to increase the bioavailability of zinc do not jeopardize
dietary adequacy and may enhance the intake and bioavailability of other nutrients concomitantly
(e.g., iron and calcium). The advantages of food-based interventions are that they avoid the antago-
nistic interactions among zinc and other micronutrients, are community-based, and may be cultural-
ly acceptable and sustainable. 

Plant breeding strategies

Improved plant breeding strategies to boost dietary intake of bioavailable zinc were outlined by
Marie Ruel. The three most promising plant breeding strategies to achieve this goal are: 1) increas-
ing the concentration of zinc in the plant; 2) reducing the amount of phytic acid, and 3) raising 
the levels of sulfur-containing amino acids (methionine, lysine, and cysteine), which are thought to
promote zinc absorption.

Breeding zinc-efficient staple crops, i.e., plants that are better adapted and yield more in 
zinc-deficient soils, is both agronomically feasible and desirable, and may increase the zinc intake of
poor populations whose diets rely mainly on staple crops. Reducing the concentration of phytic acid 
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(a strong inhibitor) and/or raising the level of sulfur-containing amino acids (promoters) could have
the additional benefit of increasing the bioavailability of zinc and possibly of other trace minerals
also present in the plant.

The key issues, according to Dr. Ruel, are not those of cost, or whether plant breeders eventually
will be successful in developing plants that provide more bioavailable zinc. Rather, the two key issues
are: 1) whether the agronomic advantages of the zinc-dense plants are sufficiently great that national
breeding programs will want to incorporate these characteristics into their lines of staple food crops
so that they will be widely adopted by farmers, and 2) whether the additional zinc contained in the
plants will be of sufficient magnitude and bioavailability so as to have an appreciable impact on the
zinc status of vulnerable populations.

Micronutrient supplements for children

Lindsay Allen began her presentation by noting that in populations with severe malnutrition or high
morbidity, food-based dietary interventions are probably not adequate to restore nutritional status,
and micronutrient supplements are required. She reported the results of a recent longitudinal study
in which the intake of absorbable zinc was calculated to be inadequate in 27% of a group of
preschoolers in Egypt, 73% in Mexico, and 97% in Kenya. Zinc intake is also likely to be inadequate
during the period from about 6 months to 2 years of age when infants are consuming some breast
milk and some solid foods. If only small quantities of zinc-rich foods are given at this time, providing
zinc supplements to infants should be a programmatic priority. 

Dr. Allen said that it may be practical and cost-effective to add zinc to iron or multivitamin supple-
ments that are now provided by UNICEF and other organizations. Questions that need to be
answered prior to initiating supplementation programs are clarifications of the best type of zinc salt to
use in supplements (absorbability of zinc differs with type of zinc salt and with increasing stomach
pH); the dose of zinc required (e.g., 5 mg/day, or 10 mg/day), and the frequency with which it must
be given. It is not known, for example, whether doses given once or twice a week are effective or
whether consistent daily doses are required. She concluded that because of the apparent benefits of
zinc for child health, it is critical that methods of supplementation be developed as soon as possible. 

Supplementation in pregnancy

The consequences of severe maternal zinc deficiency, including inability to conceive, high risk of
spontaneous abortions, neural tube defects, and anencephaly, were reviewed by Laura Caulfield. Zinc
is also necessary for estrogen-dependent functions such as expulsion of the placenta and coordination
of uterine muscles during birth, and mild-to-moderate zinc deficiency during pregnancy has been
shown to increase problems during parturition. Women with low plasma zinc concentrations were
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Meal Zinc density Phytic acid Bioavailability Zinc absorbed
(mg/kg) (%) (%) (mg)

Pea (low zinc) 9.0 1.23 77.4 5.3

Pea (high zinc) 47.8 1.16 74.9 24.6

Wheat (low zinc) 8.8 1.17 57.4 5.9

Wheat (high zinc) 33.0 1.18 56.1 18.7

(Data from Welch et al. (34) and House and Welch.(35)

Table 5. 
Effects of Increasing
Zinc Density in 
Mature Pea Seed 
or Whole Wheat
Grain  on Zinc
Bioavailability



16 Child Health Research Project Special Report, June 1997

also shown to have a three to seven times increase in premature rupture of fetal membranes, three
times higher incidence of placental abruptions, and a two to nine times higher prevalence of pro-
longed labor or protracted second stage labor than women with normal zinc. In reviewing
Goldenberg’s zinc supplementation trial in Alabama(36), Dr. Caulfield noted longer gestation time
and 25% to 50% reduction of pre-term delivery in the zinc-supplemented women. 

Dr. Caulfield ended her discussion of zinc supplementation in pregnancy by reviewing the designs
from current randomized, prospective trials for zinc supplementation in Guatemala, Chile, Peru,
Ecuador, Bangladesh, and Indonesia. She also emphasized the need for zinc and iron interactions to be
clarified prior to the initiation of supplementation programs.

Supplementation of lactating women

The effects of a zinc supplement on maternal zinc status and milk zinc concentrations were reviewed
by Nancy Krebs, who said that the maternal demand for zinc is highest in the first four months of
lactation. In her study of 71 well-nourished, lactating women in Denver, women received either a
daily 15 mg zinc supplement or placebo. Overall mean zinc intakes were 13.0 mg/d for the non-sup-
plemented group and 25.7 mg/d (including supplement) for the supplemented group. The high ini-
tial concentrations of breast milk zinc (average of 2.5 mg/day) decreased after six months, regardless
of zinc supplementation status or plasma zinc concentration, although supplemented women showed
a slower decline. This indicates that women at or near RDA zinc intakes will not transfer further
zinc to their breast milk. 

Studies from the developing world are few, and tend to show breast milk zinc concentrations
below, but still similar to, those of well-nourished women in the United States. One possible reason
for this, according to Dr. Krebs, is that post-partum, zinc could be released from a woman’s bones to
boost the lactation output. Another reason for the surprising concentrations of breast milk-zinc in
the developing world could be poor study design. Dr. Krebs ended her talk by calling for further
longitudinal studies on the topic using well-timed sampling and large enough sample sizes to correct
for high within-individual variation.

Fortification

Benefits of fortification were discussed by Peter Ranum, who said that zinc is used in two blended
products, corn-soy blend and wheat-soy blend, provided under the U.S. Food for Peace program,
where only 9 parts per million are added. This has recently been recognized as being too low and
efforts are under way to increase the level. None of the other fortified Food for Peace commodities,
such as wheat flour, are fortified with zinc. Mr. Ranum reported that the three types of zinc salts best
for fortification are zinc sulfate, zinc oxide, and zinc gluconate. They are all white powders with
good bioavailability and little effect on the shelf life or appearance of the food. Zinc oxide is the
cheapest, partly because it contains 80% zinc compared to 36% in zinc sulfate. The cost of zinc from
the sulfate is 6 times that from the oxide, while the gluconate costs 18 times more than the oxide.
Zinc oxide is the most commonly used form of zinc in fortification of cereals, with the sulfate next
and the gluconate used very infrequently. 

He added that the level of a nutrient to add to foods such as wheat flour may often be based on
restoration levels or adding enough of the nutrient to flour to bring the level back to what was in the
wheat. The Food and Nutrition Board of the National Academy of Sciences proposed in 1974 that
this be done for all milled cereals (flour, rice, and corn) suggesting a level of 22 parts per million zinc
along with nine other nutrients. While the proposal received considerable attention, it was never
enacted. Some bakers did offer specially fortified breads with the proposed fortification including
zinc, but there was low consumer interest in such fortified bread, so they eventually disappeared
from the market. In conclusion, zinc could be included in the cereal enrichment standards, if there
was a demonstrated need for more zinc in the general diet.
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Moving from science to programs

Alfred Sommer concluded that moving from science to programs requires that some person or group
of individuals, particularly scientists originally involved in the discovery, take an active, balanced,

objective leadership role. Dr. Sommer emphasized several steps to developing successful programs: mak-
ing the discovery; “proving,” to one’s own satisfaction, that the discovery is indeed real; documenting
variability of the results in different populations, environments, and cultures; overcoming the traditional
reticence of other scientists in the field and convincing them of the discovery’s validity; educating policy
makers about the discovery and its implications; and devising and establishing programs that actively put
the discovery to work. Especially important are mechanisms for sharing information and disseminating
results, bringing the scientific discussion to closure, and involving a network of organizations, particular-
ly credible entities like UNICEF and WHO. Nothing can substitute for a dedicated funding agency,
regardless of the support that others might bring to the table. 

Dr. Sommer said that crucial to program success is spreading the word. When moving from science
to programs with vitamin A, he placed stories, either early “warnings” of a potential breakthrough or sub-
sequent ones, after confirmation of the findings. These in turn stimulated other media outlets that drew
further political and financial support. In the U.S., a TV story also captured the attention of members of
Congress, which increased its support for vitamin A and child survival research.

Summary of program options

According to David Alnwick, who summarized the meeting’s conclusions, zinc can improve the 
treatment of severe malnutrition, and acute and persistent diarrhea.  The main benefits for child
health and growth may be obtained, however, by ensuring that all children received adequate intakes
of zinc.  There are a range of approaches to improve zinc deficiency, which programs need to con-
sider, such as dietary, improvement, plant breeding to increase zinc content, the use of zinc supple-
ments for children and pregnant and lactating women, and food fortification.  He emphasized that it
is possible to change micronutrient intake of millions of people in a short period of time.  In the last
five years for example, in the world as a whole, about 60% of the salt consumed by people has been
iodized, and about 30% of the world’s young children who are at risk of vitamin A deficiency receive
regular vitamin A supplements.  Iron supplementation and general food fortification programs, are
however, only just beginning, and further work is necessary to extend benefits of these more widely.
There was now ample evidence that zinc supplementation improved recovery of children suffering
from severe malnutrition. International organizations should formulate and disseminate guidelines
on the use of zinc in the treatment of severe malnutrition, support the training of health providers,
and ensure adequate supplies of zinc and other micronutrients.  

The meeting provided ample evidence that efforts to improve dietary intake of zinc would reduce 
diarrheal morbidity and improve child health in areas where zinc intakes were sub-optimal.  Dietary 
interventions tailored to fit at-risk populations have been shown to be effective in reducing zinc 
deficiency and its related morbidities, and should be implemented.  The feasibility of prevenative 
supplementation and fortification programs should be considered, and further work on plant breed-
ing to develop staple foods with a higher content of bioavailable zinc is needed.  Work to determine
the practicality and effectiveness, on a large scale, of routine supplementation with zinc of children
over 6 months of age should be a priority.  The meeting heard very little evidence for any harm from
regular low doses of zinc, given in physiological amounts, but plenty of evidence that such interven-
tion might reduce morbidity and presumably mortality.  Potentially reducing malarial morbidity by
30% would be of enormous benefit.  Urgent work was also needed to further clarify the potential of
zinc supplementation in pregnancy on reducing delivery complications and low birthweight.  In
many developing countries, where maternal mortality rates are up to 100 times higher than those in
industrialized countries, the role of micronutrient supplementation in helping to bring these
appallingly high rates down needs to be urgently evaluated.  He concluded his summary by calling
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for further research on the effects of zinc.  Important questions that need to be answered before
large-scale programs are implemented appeared to be the interaction of zinc and other micronutri-
ents, particularly iron and copper, and ways in which additional zinc could be delivered to large 
populations. The costs of good population-based research which is needed to fully quantify the ben-
efits of improving zinc status may be substantial, but this would be a small price to pay if the conse-
quences of marginal zinc deficiency are as profound as many of the studies summarized at this meet-
ing indicate.

Malnutrition in developing country children is thought to be the underlying cause of at least half
of the deaths and a substantial portion of the infectious disease morbidity. In recent years defi-

ciencies of specific nutrients have been recognized to be responsible in part for this excess burden of
disease. For example, supplementation with vitamin A reduces child mortality and has been consid-
ered one of the most cost-effective health interventions for increasing disability adjusted life years in
developing countries. Recent research, summarized here, suggests that zinc may be another specific
nutrient for which there is widespread deficiency and great benefit of supplementation or other
approaches to improve zinc nutriture.

Recent studies have demonstrated that zinc supplementation has both therapeutic and preventive
benefits in regard to childhood infectious diseases. Zinc supplementation has been shown to reduce
the duration and severity of diarrhea and to reduce the occurrence of diarrhea, respiratory infections,
including pneumonia, and malaria, while improving immunocompetence. These studies in developing
countries also indicate that with zinc supplementation, growth is improved, as are motor and cogni-
tive aspects of child development.

Further work is urgently needed to understand: 

• The prevalence of zinc deficiency and the related disease burden, including validation of 
zinc-deficiency indicators.

• The effects of zinc supplementation on child health, starting with a meta-analysis of prevention
effects; trials examining infectious disease morbidity, especially on pneumonia and malaria, in Africa
and Asia; studies on improvements in child growth and development; research on immune response
to childhood vaccines; effects on child mortality; and long-term safety trials. 

• The therapeutic effects of zinc on acute and persistent diarrhea, including a meta-analysis of thera-
peutic outcomes, and the effectiveness of zinc therapy for treatment of diarrhea in programs, as well
as for improvement in zinc status and prevention of subsequent morbidity. 

• The effects of zinc supplementation during pregnancy on child health, including a meta-analysis of
the effects of supplementation in pregnancy on child health outcomes; immune response to child-
hood vaccines; and studies of the effects on vertical transmission of HIV. 

• Delivery issues related to improving zinc nutriture, focusing on which is the best zinc salt; zinc’s
interactions with other micronutrients; the effects of dietary phytates and fiber on zinc bioavailabili-
ty; necessary dosages, and the feasibility of zinc supplementation versus increasing available dietary
zinc; and the best strategies for zinc fortification of staple foods. 
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